Tag: vector

  • Scaling a vector database

    Scaling a vector database is a crucial consideration as your data grows and your query demands increase. Here’s a breakdown of the common strategies and factors involved in scaling vector databases: Why Scaling is Important: Common Scaling Strategies: Techniques for Horizontal Scaling: Factors to Consider When Scaling: Choosing the Right Scaling Strategy: The best scaling… Read more

  • Language Models vs Embedding Models

    In the ever-evolving landscape of Artificial Intelligence, two types of models stand out as fundamental building blocks for a vast array of applications: Language Models (LLMs) and Embedding Models. While both deal with text, their core functions, outputs, and applications differ significantly. Understanding these distinctions is crucial for anyone venturing into the world of natural… Read more

  • Spring AI and Langchain Comparison

    A Comparative Look for AI Application DevelopmentThe landscape of building applications powered by Large Language Models (LLMs) is rapidly evolving. Two prominent frameworks that have emerged to simplify this process are Spring AI and Langchain. While both aim to make LLM integration more accessible to developers, they approach the problem from different ecosystems and with… Read more

  • Loading and Indexing data into a vector database

    Vector databases store data as high-dimensional vectors, which are numerical representations of data points. Loading data into a vector database involves converting your data into these vector embeddings. Indexing is a crucial step that follows loading, as it organizes these vectors in a way that allows for efficient similarity searches.Here’s a breakdown of the process: Read more

  • Spring AI chatbot with RAG and FAQ

    Demonstrate the concepts of building a Spring AI chatbot with both general knowledge RAG and an FAQ section into a single comprehensive article.Building a Powerful Spring AI Chatbot with RAG and FAQLarge Language Models (LLMs) offer incredible potential for building intelligent chatbots. However, to create truly useful and context-aware chatbots, especially for specific domains, we… Read more

  • Vector Database Internals

    Vector databases are specialized databases designed to store, manage, and efficiently query high-dimensional vectors. These vectors are numerical representations of data, often generated by machine learning models to capture the semantic meaning of the underlying data (text, images, audio, etc.). Here’s a breakdown of the key internal components and concepts: 1. Vector Embeddings: 2. Data… Read more

  • RAG to with sample FAQ and LLM

    Code Explanation: RAG with FAQ and OpenAI This Python code implements a Retrieval Augmented Generation (RAG) system specifically designed to answer questions from an FAQ dataset using OpenAI’s language models. Here’s a step-by-step explanation of the code: 1. Import Libraries: 2. load_faq_data(data_path): 3. chunk_faq_data(faq_data): 4. create_embeddings(chunks): 5. create_vector_store(chunks, embeddings): 6. create_rag_chain(vector_store, llm): 7. rag_query(rag_chain, query):… Read more

  • RAG with locally running LLM

    Sample code to enable running the LLM locally. This will involve using a local LLM instead of OpenAI. Key Changes: To run this code with a local LLM: Important Considerations: Read more

  • Implementing RAG with vector database

    Explanation: Key Points: Remember to: Read more

  • Retrieval Augmented Generation (RAG) with LLMs

    Retrieval Augmented Generation (RAG) is a technique that enhances the capabilities of Large Language Models (LLMs) by enabling them to access and incorporate information from external sources during the response generation process. This approach addresses some of the inherent limitations of LLMs, such as their inability to access up-to-date information or domain-specific knowledge. How RAG… Read more

  • Output of machine learning (ML) model

    The output of a machine learning (ML) training process is a trained model. This model is an artifact that has learned patterns and relationships from the training data. The specific form of this output depends on the type of ML algorithm used. Here’s a breakdown of what constitutes the output of ML training: 1. The… Read more

  • Using .h5 model directly for Retrieval-Augmented Generation

    Using a .h5 model directly for Retrieval-Augmented Generation (RAG) is not the typical or most efficient approach. Here’s why and how you would generally integrate a .h5 model into a RAG pipeline: Why Direct Use is Uncommon: How a .h5 Model Fits into a RAG Pipeline (Indirectly): A .h5 model can play a role in… Read more

  • What is a Tensor

    In the realm of computer science, especially within the fields of machine learning and deep learning, a tensor is a fundamental data structure. Think of it as a generalization of vectors and matrices to potentially higher dimensions. Here’s a breakdown of how to understand tensors: Key Properties of Tensors: Why are Tensors Important in Machine… Read more