Tag: json
-
Distinguish the use cases for the primary vector database options on AWS
Here we try to distinguish the use cases for the primary vector database options on AWS: 1. Amazon OpenSearch Service (with Vector Engine): 2. Amazon Bedrock Knowledge Bases (with underlying vector store choices): 3. Amazon Aurora PostgreSQL/RDS for PostgreSQL (with pgvector): 4. Amazon Neptune Analytics (with Vector Search): 5. Vector Search for Amazon MemoryDB for… Read more
-
Automating Customer Communication: Building a Production-Ready LangChain Agent for Order Notifications
In the fast-paced world of e-commerce, proactive and timely communication with customers is paramount for fostering trust and ensuring a seamless post-purchase experience. Manually tracking new orders and sending confirmation emails can be a significant drain on resources and prone to delays. This article presents a comprehensive guide to building a production-ready LangChain agent designed… Read more
-
Intelligent Order Monitoring Langchain LLM tools
Building Intelligent Order Monitoring: A LangChain Agent for Database ChecksIn today’s fast-paced e-commerce landscape, staying on top of new orders is crucial for efficient operations and timely fulfillment. While traditional monitoring systems often rely on static dashboards and manual checks, the power of Large Language Models (LLMs) and agentic frameworks like LangChain offers a more… Read more
-
Building a Hilariously Insightful Image Recognition Chatbot with Spring AI
Building a Hilariously Insightful Image Recognition Chatbot with Spring AI (and a Touch of Sass)While Spring AI’s current spotlight shines on language models, the underlying principles of integration and modularity allow us to construct fascinating applications that extend beyond text. In this article, we’ll embark on a whimsical journey to build an image recognition chatbot… Read more
-
Spring AI chatbot with RAG and FAQ
Demonstrate the concepts of building a Spring AI chatbot with both general knowledge RAG and an FAQ section into a single comprehensive article.Building a Powerful Spring AI Chatbot with RAG and FAQLarge Language Models (LLMs) offer incredible potential for building intelligent chatbots. However, to create truly useful and context-aware chatbots, especially for specific domains, we… Read more
-
RAG to with sample FAQ and LLM
Code Explanation: RAG with FAQ and OpenAI This Python code implements a Retrieval Augmented Generation (RAG) system specifically designed to answer questions from an FAQ dataset using OpenAI’s language models. Here’s a step-by-step explanation of the code: 1. Import Libraries: 2. load_faq_data(data_path): 3. chunk_faq_data(faq_data): 4. create_embeddings(chunks): 5. create_vector_store(chunks, embeddings): 6. create_rag_chain(vector_store, llm): 7. rag_query(rag_chain, query):… Read more
-
gRPC vs HTTP
gRPC (gRPC Remote Procedure Calls) and HTTP (Hypertext Transfer Protocol) are both fundamental protocols used for communication between applications, but they differ significantly in their design, features, and typical use cases. Here’s a comprehensive comparison: gRPC HTTP Key Differences Summarized: Feature gRPC HTTP Protocol RPC framework over HTTP/2 Application protocol (various versions) Data Format Primarily… Read more
-
MLOps pipeline
While a full-fledged MLOps pipeline involves integrating various tools and platforms, here are some illustrative code snippets demonstrating key MLOps concepts using popular Python libraries and tools. These examples focus on individual stages and can be combined to build a more comprehensive pipeline. 1. Data Versioning with DVC (Data Version Control): This isn’t Python code,… Read more
-
Using .h5 model directly for Retrieval-Augmented Generation
Using a .h5 model directly for Retrieval-Augmented Generation (RAG) is not the typical or most efficient approach. Here’s why and how you would generally integrate a .h5 model into a RAG pipeline: Why Direct Use is Uncommon: How a .h5 Model Fits into a RAG Pipeline (Indirectly): A .h5 model can play a role in… Read more
-
Describing Prediction Input and Output
In the context of machine learning, particularly when discussing model deployment and serving, prediction input refers to the data you provide to a trained model to get a prediction, and prediction output is the result the model returns based on that input. Let’s break down these concepts in more detail: Prediction Input: Prediction Output: Relationship… Read more