Tag: index

  • Comparing strategies for DynamoDB vs. Bigtable

    DynamoDB vs. Bigtable Both Amazon DynamoDB and Google Cloud Bigtable are NoSQL databases that offer high scalability and performance, but they have different strengths and are suited for different use cases. Here’s a comparison of their design strategies: Amazon DynamoDB Data Model: Key-value and document-oriented. Design Strategy: Primary Key: Partition key and optional sort key.… Read more

  • Google Bigtable Index Strategies and Code Samples

    Google Bigtable Index Strategies and Code Samples While Bigtable doesn’t have traditional indexes, its row key design and data organization are crucial for achieving index-like query performance. Here’s a breakdown of strategies and code examples to illustrate this. 1. Row Key Design as an “Index” The row key acts as the primary index in Bigtable.… Read more

  • Azure Cosmos DB Index Comparison: GSI vs. LSI

    Azure Cosmos DB Index Comparison Azure Cosmos DB offers two main types of indexes to optimize query performance: Global Secondary Indexes (GSIs) and Local Secondary Indexes (LSIs). This article provides a detailed comparison. Key Differences Feature Global Secondary Index (GSI) Local Secondary Index (LSI) Partition Key Can be different from the base container’s partition key… Read more

  • DynamoDB Index Comparison: GSI vs. LSI

    DynamoDB Index Comparison: GSI vs. LSI DynamoDB Index Comparison: GSI vs. LSI DynamoDB offers two types of secondary indexes to enhance query performance: Global Secondary Indexes (GSIs) and Local Secondary Indexes (LSIs). Here’s a detailed comparison: Key Differences Feature Global Secondary Index (GSI) Local Secondary Index (LSI) Partition and Sort Keys Can have a different… Read more

  • DynamoDB Indexing Examples

    DynamoDB Indexing Examples DynamoDB Indexing Examples Here are detailed examples of DynamoDB indexing, including Global Secondary Indexes (GSIs) and Local Secondary Indexes (LSIs), with explanations. Example 1: E-commerce Product Catalog Table: Products Primary Key: ProductID (Partition Key), SKU (Sort Key) Attributes: Name, Category, Price, Brand, Color, Size Scenario We want to efficiently query products by… Read more

  • Sample project: Migrating E-commerce Data to a Graph Database

    Migrating E-commerce Data to a Graph Database Migrating E-commerce Data to a Graph Database This document outlines the process of migrating data from a relational database (RDBMS) to a graph database, using an e-commerce scenario as an example. We’ll cover the key steps involved, from understanding the RDBMS schema to designing the graph model and… Read more

  • Advanced RDBMS to Graph Database Loading and Validation

    Advanced RDBMS to Graph Database Loading Advanced Tips for Loading RDBMS Data into Graph Databases This document provides advanced strategies for efficiently transferring data from relational database management systems (RDBMS) to graph databases, such as Neo4j. It covers techniques beyond basic data loading, focusing on performance, data integrity, and schema optimization. 1. Understanding the Challenges… Read more

  • Ingesting data from RDBMS to Graph Database

    Advanced RDBMS to Graph Database Loading Advanced Tips for Loading RDBMS Data into Graph Databases This document provides advanced strategies for efficiently transferring data from relational database management systems (RDBMS) to graph databases, such as Neo4j. It covers techniques beyond basic data loading, focusing on performance, data integrity, and schema optimization. 1. Understanding the Challenges… Read more

  • Advanced Neo4j Tips

    Advanced Neo4j Tips Advanced Neo4j Tips This document provides advanced tips for optimizing your Neo4j graph database for performance, scalability, and efficient data management. It goes beyond the basics to help you leverage Neo4j’s full potential. Schema Design A well-designed schema is the foundation of a high-performance graph database. It dictates how your data is… Read more

  • Implementing Graph-Based Retrieval Augmented Generation

    Implementing Graph-Based Retrieval Augmented Generation Implementing Graph-Based Retrieval Augmented Generation This document outlines the implementation of a system that combines the power of Large Language Models (LLMs) with structured knowledge from a graph database to perform advanced question answering. This approach, known as Graph-Based Retrieval Augmented Generation (RAG), allows us to answer complex queries that… Read more