Estimated reading time: 6 minutes

Spring AI chatbot with RAG and FAQ

Demonstrate the concepts of building a Spring AI chatbot with both general knowledge and an FAQ section into a single comprehensive article.
Building a Powerful Spring AI Chatbot with RAG and FAQ
Large Language Models () offer incredible potential for building intelligent chatbots. However, to create truly useful and context-aware chatbots, especially for specific domains, we often need to ground their responses in relevant knowledge. This is where Retrieval-Augmented Generation (RAG) comes into play. Furthermore, for common inquiries, a direct Frequently Asked Questions (FAQ) mechanism can provide faster and more accurate answers. This article will guide you through building a Spring AI chatbot that leverages both RAG for general knowledge and a dedicated FAQ section.
Core Concepts:

  • Large Language Models (LLMs): The AI brains behind the chatbot, capable of generating human-like text. Spring AI provides abstractions to interact with various providers.
  • Retrieval-Augmented Generation (RAG): A process of augmenting the LLM’s knowledge by retrieving relevant documents from a knowledge base and including them in the prompt. This allows the chatbot to answer questions based on specific information.
  • Document Loading: The process of ingesting your knowledge base (e.g., PDFs, text files, web pages) into a format Spring AI can process.
  • Text Embedding: Converting text into numerical representations that capture its semantic meaning. This enables efficient similarity searching.
  • Vector Store: A optimized for storing and querying vector .
  • Retrieval: The process of searching the vector store for embeddings similar to the user’s query.
  • Prompt Engineering: Crafting effective prompts that guide the LLM to generate accurate and relevant responses, often including retrieved context.
  • Frequently Asked Questions (FAQ): A predefined set of common questions and their answers, allowing for direct retrieval for common inquiries.
    Setting Up Your Spring AI Project:
  • Create a Spring Boot Project: Start with a new Spring Boot project using Spring Initializr (https://start.spring.io/). Include the necessary Spring AI dependencies for your chosen LLM provider (e.g., spring-ai-openai, spring-ai-anthropic) and a vector store implementation (e.g., spring-ai-chromadb).
    org.springframework.ai spring-ai-openai runtime org.springframework.ai spring-ai-chromadb org.springframework.boot spring-boot-starter-web com.fasterxml.jackson.core jackson-databind org.springframework.boot spring-boot-starter-test test
  • Configure Keys and Vector Store: Configure your LLM provider’s API key and the settings for your chosen vector store in your application.properties or application.yml file.
    spring.ai.openai.api-key=YOUR_OPENAI_API_KEY
    spring.ai.openai.embedding.options.model=text-embedding-3-small

spring.ai.vectorstore.chroma.host=localhost
spring.ai.vectorstore.chroma.port=8000

Implementing RAG for General Knowledge:

  • Document Loading and Service: Create a service to load your knowledge base documents, embed their content, and store them in the vector store.
    @Service
    public class DocumentService { private final PdfLoader pdfLoader;
    private final EmbeddingClient embeddingClient;
    private final VectorStore vectorStore; public DocumentService(PdfLoader pdfLoader, EmbeddingClient embeddingClient, VectorStore vectorStore) {
    this.pdfLoader = pdfLoader;
    this.embeddingClient = embeddingClient;
    this.vectorStore = vectorStore;
    } @PostConstruct
    public void loadAndIndexDocuments() throws IOException {
    List documents = pdfLoader.load(new FileSystemResource(“path/to/your/documents.pdf”));
    List embeddings = embeddingClient.embed(documents.stream().map(Document::getContent).toList());
    vectorStore.add(embeddings, documents);
    System.out.println(“General knowledge documents loaded and indexed.”);
    }
    }
  • Chat Endpoint with RAG: Implement your chat endpoint to retrieve relevant documents based on the user’s query and include them in the prompt sent to the LLM.
    @RestController
    public class ChatController { private final ChatClient chatClient;
    private final VectorStore vectorStore;
    private final EmbeddingClient embeddingClient; public ChatController(ChatClient chatClient, VectorStore vectorStore, EmbeddingClient embeddingClient) {
    this.chatClient = chatClient;
    this.vectorStore = vectorStore;
    this.embeddingClient = embeddingClient;
    } @GetMapping(“/chat”)
    public String chat(@RequestParam(“message”) String message) {
    Embedding queryEmbedding = embeddingClient.embed(message);
    List searchResults = vectorStore.similaritySearch(queryEmbedding.getVector(), 3); String context = searchResults.stream() .map(SearchResult::getContent) .collect(Collectors.joining("\n\n")); Prompt prompt = new PromptTemplate(""" Answer the question based on the context provided. Context: {context} Question: {question} """) .create(Map.of("context", context, "question", message));ChatResponse response = chatClient.call(prompt); return response.getResult().getOutput().getContent(); }
    }

Integrating an FAQ Section:

  • Create FAQ Data: Define your frequently asked questions and answers (e.g., in faq. in your resources folder).
    [
    {
    “question”: “What are your hours of operation?”,
    “answer”: “Our business hours are Monday to Friday, 9 AM to 5 PM.”
    },
    {
    “question”: “Where are you located?”,
    “answer”: “We are located at 123 Main Street, Bentonville, AR.”
    },
    {
    “question”: “How do I contact customer support?”,
    “answer”: “You can contact our customer support team by emailing support@example.com or calling us at (555) 123-4567.”
    }
    ]
  • FAQ Loading and Indexing Service: Create a service to load and index your FAQ data in the vector store.
    @Service
    public class FAQService { private final EmbeddingClient embeddingClient;
    private final VectorStore vectorStore;
    private final ObjectMapper objectMapper; public FAQService(EmbeddingClient embeddingClient, VectorStore vectorStore, ObjectMapper objectMapper) {
    this.embeddingClient = embeddingClient;
    this.vectorStore = vectorStore;
    this.objectMapper = objectMapper;
    } @PostConstruct
    public void loadAndIndexFAQs() throws IOException {
    Resource faqResource = new ClassPathResource(“faq.json”);
    List faqEntries = objectMapper.readValue(faqResource.getInputStream(), new TypeReference>() {}); List<Document> faqDocuments = faqEntries.stream() .map(faq -> new Document(faq.getQuestion(), Map.of("answer", faq.getAnswer()))) .toList(); List<Embedding> faqEmbeddings = embeddingClient.embed(faqDocuments.stream().map(Document::getContent).toList()); vectorStore.add(faqEmbeddings, faqDocuments); System.out.println("FAQ data loaded and indexed."); } public record FAQEntry(String question, String answer) {}
    }
  • Prioritize FAQ in Chat Endpoint: Modify your chat endpoint to first check if the user’s query closely matches an FAQ before resorting to general knowledge RAG.
    @RestController
    public class ChatController { private final ChatClient chatClient;
    private final VectorStore vectorStore;
    private final EmbeddingClient embeddingClient; public ChatController(ChatClient chatClient, VectorStore vectorStore, EmbeddingClient embeddingClient) {
    this.chatClient = chatClient;
    this.vectorStore = vectorStore;
    this.embeddingClient = embeddingClient;
    } @GetMapping(“/chat”)
    public String chat(@RequestParam(“message”) String message) {
    Embedding queryEmbedding = embeddingClient.embed(message); // Search FAQ first List<SearchResult> faqSearchResults = vectorStore.similaritySearch(queryEmbedding.getVector(), 1); if (!faqSearchResults.isEmpty() && faqSearchResults.get(0).getScore() > 0.85) { return (String) faqSearchResults.get(0).getMetadata().get("answer"); } // If no good FAQ match, proceed with general knowledge RAG List<SearchResult> knowledgeBaseResults = vectorStore.similaritySearch(queryEmbedding.getVector(), 3); String context = knowledgeBaseResults.stream() .map(SearchResult::getContent) .collect(Collectors.joining("\n\n")); Prompt prompt = new PromptTemplate(""" Answer the question based on the context provided. Context: {context} Question: {question} """) .create(Map.of("context", context, "question", message));ChatResponse response = chatClient.call(prompt); return response.getResult().getOutput().getContent(); }
    }

Conclusion:
By combining the power of RAG with a dedicated FAQ section, you can build a Spring AI chatbot that is both knowledgeable about a broad range of topics (through RAG) and efficient in answering common questions directly. This approach leads to a more robust, accurate, and user-friendly chatbot experience. Remember to adapt the code and configurations to your specific data sources and requirements, and experiment with similarity thresholds to optimize the of your FAQ retrieval.

Related Posts

Agentic AI (45) AI Agent (35) airflow (6) Algorithm (35) Algorithms (88) apache (57) apex (5) API (135) Automation (67) Autonomous (60) auto scaling (5) AWS (73) aws bedrock (1) Azure (47) BigQuery (22) bigtable (2) blockchain (3) Career (7) Chatbot (23) cloud (143) cosmosdb (3) cpu (45) cuda (14) Cybersecurity (19) database (138) Databricks (25) Data structure (22) Design (113) dynamodb (10) ELK (2) embeddings (39) emr (3) flink (12) gcp (28) Generative AI (28) gpu (25) graph (49) graph database (15) graphql (4) image (50) indexing (33) interview (7) java (43) json (79) Kafka (31) LLM (59) LLMs (55) Mcp (6) monitoring (128) Monolith (6) mulesoft (4) N8n (9) Networking (16) NLU (5) node.js (16) Nodejs (6) nosql (29) Optimization (91) performance (193) Platform (121) Platforms (96) postgres (5) productivity (31) programming (54) pseudo code (1) python (110) pytorch (22) Q&A (2) RAG (65) rasa (5) rdbms (7) ReactJS (1) realtime (2) redis (16) Restful (6) rust (3) salesforce (15) Spark (39) sql (70) tensor (11) time series (17) tips (14) tricks (29) use cases (93) vector (60) vector db (9) Vertex AI (23) Workflow (67)