Sample project: Migrating E-commerce Data to a Graph Database

Migrating E-commerce Data to a Graph Database

Migrating E-commerce Data to a Graph

This document outlines the process of migrating data from a relational database () to a graph database, using an e-commerce scenario as an example. We’ll cover the key steps involved, from understanding the RDBMS schema to designing the graph model and performing the data migration.

1. Understanding the RDBMS Schema

Before migrating any data, it’s crucial to thoroughly understand the structure of the source RDBMS. In our e-commerce example, we’ll assume the following tables (you might have more):

  • Customers (customer_id, first_name, last_name, email, registration_date)
  • Products (product_id, name, description, price, category)
  • Orders (order_id, customer_id, order_date, total_amount)
  • Order_Items (order_id, product_id, quantity, price)
  • Categories (category_id, name)
  • Reviews (review_id, customer_id, product_id, rating, comment, review_date)

Key relationships to note:

  • Customers place Orders.
  • Orders contain Order_Items, which link to Products.
  • Products belong to a Category.
  • Customers write Reviews for Products.

2. Designing the Graph Model

The next step is to the graph model that will represent the e-commerce data. Here’s a possible mapping:

  • Nodes:
    • Customer (properties: customer_id, first_name, last_name, email, registration_date)
    • Product (properties: product_id, name, description, price)
    • Order (properties: order_id, order_date, total_amount)
    • Category (properties: category_id, name)
    • Review (properties: review_id, rating, comment, review_date)
  • Relationships:
    • (Customer)-[:PLACED_ORDER]->(Order)
    • (Order)-[:CONTAINS]->(Product) (with quantity property from Order_Items)
    • (Product)-[:BELONGS_TO]->(Category)
    • (Customer)-[:WROTE_REVIEW]->(Review)
    • (Review)-[:REVIEWS]->(Product)

3. Extract, Transform, Load (ETL)

We’ll use the ETL process to migrate the data.

3.1 Extract

Extract data from the RDBMS. This can be done using queries, database export tools, or languages with database connectors.


-- Example SQL queries (PostgreSQL)
SELECT customer_id, first_name, last_name, email, registration_date FROM Customers;
SELECT product_id, name, description, price FROM Products;
SELECT order_id, customer_id, order_date, total_amount FROM Orders;
SELECT order_id, product_id, quantity, price FROM Order_Items;
SELECT category_id, name FROM Categories;
SELECT review_id, customer_id, product_id, rating, comment, review_date FROM Reviews;
        

3.2 Transform

Transform the extracted data into the graph model. This involves mapping RDBMS data to nodes and relationships.


# Example  code (conceptual)
def transform_data(data):
    nodes = []
    relationships = []

    for customer in data['customers']:
        nodes.append({
            'label': 'Customer',
            'properties': customer
        })

    for product in data['products']:
        nodes.append({
            'label': 'Product',
            'properties': product
        })

    for category in data['categories']:
        nodes.append({
            'label': 'Category',
            'properties': category
        })

    for order in data['orders']:
        nodes.append({
            'label': 'Order',
            'properties': order
        })
        customer_id = order['customer_id']
        relationships.append({
                'source_label': 'Customer',
                'target_label': 'Order',
                'source_properties': {'customer_id': customer_id},
                'target_properties': {'order_id': order['order_id']},
                'type': 'PLACED_ORDER',
                'properties': {}
            })

    for order_item in data['order_items']:
        relationships.append({
            'source_label': 'Order',
            'target_label': 'Product',
            'source_properties': {'order_id': order_item['order_id']},
            'target_properties': {'product_id': order_item['product_id']},
            'type': 'CONTAINS',
            'properties': {'quantity': order_item['quantity']}
        })
    for review in data['reviews']:
        nodes.append({
            'label': 'Review',
            'properties': review
        })
        relationships.append({
            'source_label': 'Customer',
            'target_label': 'Review',
            'source_properties': {'customer_id': review['customer_id']},
            'target_properties': {'review_id': review['review_id']},
            'type': 'WROTE_REVIEW',
            'properties': {}
        })
        relationships.append({
            'source_label': 'Review',
            'target_label': 'Product',
            'source_properties': {'review_id': review['review_id']},
            'target_properties': {'product_id': review['product_id']},
            'type': 'REVIEWS',
            'properties': {}
        })

    for product in data['products']:
        category_id = product['category']
        relationships.append({
            'source_label': 'Product',
            'target_label': 'Category',
            'source_properties': {'product_id': product['product_id']},
            'target_properties': {'category_id': category_id},
            'type': 'BELONGS_TO',
            'properties': {}
        })
    return nodes, relationships
        

3.3 Load

Load the transformed data into the graph database. We’ll use Neo4j and Cypher for this example.


// Example Cypher query (Neo4j)
// Using a driver, you would pass the data as parameters

//Create Categories
UNWIND $categories AS category
CREATE (c:Category {category_id: category.category_id, name: category.name})

// Create Customer nodes
UNWIND $customers AS customer
CREATE (c:Customer {
    customer_id: customer.customer_id,
    first_name: customer.first_name,
    last_name: customer.last_name,
    email: customer.email,
    registration_date: customer.registration_date
});

// Create Product nodes
UNWIND $products AS product
CREATE (p:Product {
    product_id: product.product_id,
    name: product.name,
    description: product.description,
    price: product.price
});

// Create Order nodes
UNWIND $orders AS order
CREATE (o:Order {
    order_id: order.order_id,
    order_date: order.order_date,
    total_amount: order.total_amount
});

//Create Review Nodes
UNWIND $reviews AS review
CREATE (r:Review{
    review_id: review.review_id,
    rating: review.rating,
    comment: review.comment,
    review_date: review.review_date
})

// Create relationships:  Orders placed by Customers
UNWIND $orders AS order
MATCH (c:Customer {customer_id: order.customer_id})
CREATE (c)-[:PLACED_ORDER]->(o:Order {order_id: order.order_id});

// Create relationships: Order Items
UNWIND $order_items AS item
MATCH (o:Order {order_id: item.order_id})
MATCH (p:Product {product_id: item.product_id})
CREATE (o)-[:CONTAINS {quantity: item.quantity}]->(p);

// Create relationships: Product belongs to category
UNWIND $products AS product
MATCH (p:Product{product_id: product.product_id})
MATCH (c:Category{category_id: product.category})
CREATE (p)-[:BELONGS_TO]->(c)

// Create relationships: Customer wrote review and review reviews product
UNWIND $reviews AS review
MATCH (c:Customer {customer_id: review.customer_id})
MATCH (p:Product {product_id: review.product_id})
CREATE (c)-[:WROTE_REVIEW]->(r:Review{review_id: review.review_id})-[:REVIEWS]->(p);
        

4. Validation

After loading the data, it’s crucial to validate its accuracy and completeness. Here are some techniques:

  • Count Verification: Compare the number of nodes and relationships in the graph with the number of corresponding rows in the RDBMS tables.
  • Sample Queries: Run representative queries in both the RDBMS and the graph database to ensure consistency in the results.
  • Data Profiling: Check for any data inconsistencies or anomalies in the graph database.
  • Graph Visualization: Visualize portions of the graph to verify the correctness of the relationships.

5.

Once the data is loaded and validated, consider optimizing the graph for :

  • Indexes: Create indexes on frequently queried properties.
  • Constraints: Define constraints to ensure data integrity.
  • Query Optimization: Analyze and optimize Cypher queries for optimal performance.

AI AI Agent Algorithm Algorithms apache API Autonomous AWS Azure BigQuery Chatbot cloud cpu database Databricks Data structure Design embeddings gcp gpu indexing java json Kafka Life LLM LLMs monitoring N8n Networking nosql Optimization performance Platform Platforms postgres programming python RAG Spark sql tricks Trie vector Workflow

Leave a Reply

Your email address will not be published. Required fields are marked *