Category: Workflow
-
n8n Integrations with external services
n8n Existing Integrations n8n boasts a wide array of built-in integrations, allowing you to connect and automate workflows with numerous popular applications and services in 2025. These integrations are constantly expanding, making n8n a versatile tool for various automation needs. Core Nodes (Built-in): HTTP Request: For making generic API calls to any RESTful or GraphQL… Read more
-
Extending n8n with APIs
Extending n8n with APIs n8n‘s power lies in its ability to connect and automate workflows across a vast ecosystem of applications and services. A fundamental way to expand n8n’s capabilities beyond its built-in nodes is by leveraging Application Programming Interfaces (APIs). APIs allow n8n to interact with virtually any service that exposes programmatic interfaces, enabling… Read more
-
Building Agentic AI applications Using n8n
Building Agentic AI Using n8n n8n, a powerful open-source workflow automation platform, can be effectively leveraged to build various components and orchestrate the functionalities of agentic AI systems in 2025. While n8n itself isn’t a machine learning framework for training AI models, its ability to connect different services, handle data transformations, and manage complex workflows… Read more
-
Exploring the Synergy of Kafka and Databricks for Agentic AI
Combining Apache Kafka and Databricks offers a powerful and comprehensive platform for building, deploying, and managing sophisticated agentic AI systems. Kafka excels at real-time data ingestion and stream processing, while Databricks provides a unified environment for big data processing, machine learning, and AI model development. Kafka’s Role in Agentic AI: Real-time Data Foundation Kafka provides… Read more
-
Leveraging Kafka for Agentic AI Systems
Apache Kafka, a distributed streaming platform, offers significant advantages for building and deploying agentic AI systems. Its core strength lies in its ability to handle high-throughput, real-time data streams reliably, making it an excellent choice for managing the dynamic interactions and data flow inherent in intelligent agents. Key Use Cases of Kafka in Agentic AI:… Read more
-
Building Agentic AI Applications on Microsoft Azure
Microsoft Azure offers a rich set of services and tools for building agentic AI applications – intelligent systems capable of autonomous action, planning, memory, and interaction with their environment. This detailed guide outlines key Azure services, their functionalities, and relevant links to help you get started, formatted for your WordPress site. Core Foundation Models Agent… Read more
-
Building Agentic AI Applications on Google Cloud Platform (GCP)
Google Cloud Platform (GCP) offers a rapidly evolving suite of tools and services for building agentic AI applications – intelligent systems capable of autonomous action, planning, memory, and interaction with their environment. Here’s a detailed overview of key GCP services and concepts, along with relevant links, formatted for your WordPress site. Core Foundation Models Agent… Read more
-
Building Agentic AI Applications on AWS: Detailed Tools and Resources
Amazon Web Services (AWS) provides a robust and evolving ecosystem for building sophisticated agentic AI applications. These intelligent systems can operate autonomously, plan actions, retain memory, and interact with their environment to achieve specific goals. This detailed guide outlines key AWS services, their functionalities, and relevant links to help you get started, formatted for your… Read more
-
Most Important Cloud Developer Tools in Azure
Microsoft Azure offers a comprehensive suite of tools for cloud developers to build, deploy, and manage applications. Identifying the most essential ones can significantly enhance your development workflow and productivity. This article highlights key Azure tools that every cloud developer should be familiar with. 1. Azure CLI Description: The Azure CLI is a command-line tool… Read more
-
Most Important Cloud Developer Tools in GCP
Google Cloud Platform (GCP) offers a rich set of tools for cloud developers to build, deploy, and manage applications. Identifying the most crucial ones can significantly enhance your development workflow. This article highlights key GCP tools that every cloud developer should be familiar with. 1. Google Cloud CLI (gcloud CLI) Description: The gcloud CLI is… Read more
-
Most Important Cloud Developer Tools in AWS
Amazon Web Services (AWS) offers a vast array of tools for cloud developers. Identifying the most important ones can streamline your workflow and boost productivity. This article highlights key AWS tools that every cloud developer should be familiar with. 1. AWS Command Line Interface (CLI) Description: The AWS CLI is a unified tool to manage… Read more
-
Loading manuals into a vector database
Here’s a breakdown of how to load manuals into a vector database, focusing on the key steps and considerations: 1. Choose a Vector Database: Several vector databases are available, each with its own strengths and weaknesses.1 Some popular options include: Consider factors like scalability, ease of use, cost, integration with your existing stack, and specific… Read more
-
MLOps pipeline
While a full-fledged MLOps pipeline involves integrating various tools and platforms, here are some illustrative code snippets demonstrating key MLOps concepts using popular Python libraries and tools. These examples focus on individual stages and can be combined to build a more comprehensive pipeline. 1. Data Versioning with DVC (Data Version Control): This isn’t Python code,… Read more
-
Workflow of MLOps
The workflow of MLOps is an iterative and cyclical process that encompasses the entire lifecycle of a machine learning model, from initial ideation to ongoing monitoring and maintenance in production. While specific implementations can vary, here’s a common and comprehensive workflow: Phase 1: Business Understanding & Problem Definition Phase 2: Data Engineering & Preparation Phase… Read more
-
Developing and training machine learning models within an MLOps framework
The “MLOps training workflow” specifically focuses on the steps involved in developing and training machine learning models within an MLOps framework. It’s a subset of the broader MLOps lifecycle but emphasizes the automation, reproducibility, and tracking aspects crucial for effective model building. Here’s a typical MLOps training workflow: Phase 1: Data Preparation (MLOps Perspective) Phase… Read more
-
Output of machine learning (ML) model
The output of a machine learning (ML) training process is a trained model. This model is an artifact that has learned patterns and relationships from the training data. The specific form of this output depends on the type of ML algorithm used. Here’s a breakdown of what constitutes the output of ML training: 1. The… Read more
-
Google BigQuery and Vertex AI Together
Google BigQuery and Vertex AI are powerful components of Google Cloud‘s AI/ML ecosystem and are designed to work seamlessly together to facilitate the entire machine learning lifecycle. Here’s how they integrate and how you can leverage them together: Key Integration Points and Use Cases: Example Workflow: Code Snippet (Conceptual – Python with Vertex AI SDK… Read more