Category: llm

  • Building a Weather Chatbot with Langchain

    Building a Weather Chatbot with Langchain This article demonstrates how to create a simple chatbot using Langchain that can fetch and provide current weather information based on city names or zip codes. We’ll utilize the power of Large Language Models (LLMs) and a simple custom tool to achieve this. Prerequisites Python 3.6+ Langchain Library: Install… Read more

  • Building a Stock Price Chatbot with Langchain

    Building a Stock Price Chatbot with Langchain This article demonstrates how to create a simple chatbot using Langchain that can fetch and provide current and historical stock prices. We’ll leverage the power of Large Language Models (LLMs) and the yfinance library to build this interactive tool. Prerequisites Python 3.6+ Langchain Library: Install using pip install… Read more

  • Agentic AI Increase Power Consumption Bills? – A Detailed Look

    Energy Costs of LLMs in Agentic AI – Detailed Analysis The integration of Large Language Models (LLMs) into Agentic AI architectures is indeed expected to significantly contribute to higher power consumption bills for enterprises. This stems from the inherent energy demands of LLMs coupled with the continuous and often complex operations required by autonomous agents.… Read more

  • Energy Costs of Using LLMs within Enterprise

    Energy Costs of Using LLMs within Enterprise The energy costs of using Large Language Models (LLMs) within an enterprise are a multifaceted issue with implications for both operational expenses and environmental sustainability. These costs arise primarily from two key stages in the LLM lifecycle: training and inference. Factors Influencing Energy Consumption Model Size: The number… Read more

  • AMD vs. NVIDIA LLM Performance

    AMD vs. NVIDIA LLM Performance (May 2025) This article compares the performance of AMD and NVIDIA hardware when running Large Language Models (LLMs) as of May 2025, based on recent reports and trends. Key Factors Influencing LLM Performance VRAM (Video RAM) The size of the GPU‘s memory is crucial for handling large LLMs. Larger models… Read more

  • Security Issues in LangChain and MCP Servers

    Security Issues in LangChain and MCP Servers Security Issues in LangChain Prompt Injection: Maliciously crafted prompts can manipulate the LLM to perform unintended actions, bypass filters, or disclose sensitive information. This is a primary concern as user input directly influences the LLM’s behavior. Example: A user might craft a prompt like “Ignore previous instructions and… Read more

  • Detailed Exploration of LangChain Chains and Use Cases

    Detailed Exploration of LangChain Chains and Use Cases LangChain’s “Chains” are composable sequences of components, allowing you to build sophisticated applications by linking together Language Models (LLMs), prompts, utilities, and other chains. Let’s explore each of the core chain types with more detail and practical use cases. 1. LLMChain: Structuring Language Model Interactions Detail: The… Read more

  • Exploring LangChain MCP Features with Sample Code

    Exploring LangChain MCP Features with Sample Code LangChain provides integration with the Model Context Protocol (MCP), allowing LLM agents to interact with external tools and data sources managed by an MCP server. This enables powerful capabilities like real-time information retrieval and action execution. Here’s an exploration of key LangChain MCP features with illustrative Python code… Read more

  • Retrieval-Augmented Generation (RAG) Enhanced by Model Context Protocol (MCP)

    RAG Enhanced by MCP: Detailed Explanation The integration of Retrieval-Augmented Generation (RAG) with the Model Context Protocol (MCP) offers a powerful paradigm for building more intelligent and versatile Large Language Model (LLM) applications. MCP provides a structured way for LLMs to interact with external tools and data sources, which can significantly enhance the retrieval capabilities… Read more

  • Various flavors of Retrieval Augmented Generation (RAG)

    Various Types of RAG The field of Retrieval-Augmented Generation (RAG) is rapidly evolving, with several variations and advanced techniques emerging beyond the basic “naive” RAG. I. Based on the Core RAG Pipeline 1. Naive/Standard RAG The user’s query is directly used to retrieve relevant documents, and these are passed to the LLM for generation. Use… Read more

  • Exploring LangSmith Observability in Detail

    LangSmith Observability in Detail LangSmith provides comprehensive observability for your LLM applications, offering detailed insights into the execution flow, performance, and outputs of your chains, agents, and tools. It helps you understand what’s happening inside your LLM application, making it easier to debug, evaluate, and improve its reliability and quality. 1. Tracing: End-to-End Visibility Detailed… Read more

  • Exploring LangChain, LangGraph, and LangSmith

    Exploring LangChain, LangGraph, and LangSmith The LangChain ecosystem provides a comprehensive suite of tools for building, deploying, and managing applications powered by Large Language Models (LLMs). It consists of three key components: LangChain, LangGraph, and LangSmith. LangChain: The Building Blocks LangChain is an open-source framework designed to simplify the development of LLM-powered applications. It provides… Read more

  • Understanding Agentic Retrieval-Augmented Generation (RAG)

    Understanding Agentic RAG Agentic Retrieval-Augmented Generation (RAG) goes beyond standard RAG by incorporating more sophisticated agent-like behaviors to enhance the generation process. Think of it as a proactive and strategic assistant for information retrieval and content generation. Key Differences from Standard RAG Decision-Making in Retrieval: Agentic RAG decides *when* and *how* to retrieve information, unlike… Read more

  • Top 5 Code Generation Models (May 5, 2025)

    Top 5 Code Generation LLMs (May 5, 2025) The landscape of Large Language Models for code generation is dynamic. This list highlights five prominent models based on their performance, features, and recognition as of today. 1. GPT-4o Provider: OpenAI Key Details: Often cited as a leader in overall LLM benchmarks, including code generation. Known for… Read more

  • Test Cases for Training LLMs

    Test Cases for Training LLMs When training Large Language Models (LLMs), particularly for tasks like **extracting information from tax documents**, writing effective test cases is crucial for ensuring your model learns as intended and can accurately perform the desired function. These test cases differ significantly from traditional software testing due to the probabilistic and generative… Read more

  • Implementing Locally running Mistral Chatbot with RAG

    Locally running Mistral Chatbot with RAG Let’s implement a local running chatbot with Mistral LLM using RAG to retrieve documents from a locally running Vector DB that also contains FAQs. Here’s a breakdown of the steps and the Python code to achieve this: Phase 1: Setting Up the Local Environment Install Dependencies: pip install transformers… Read more

  • Top 10 LLMs on Hugging Face for Chatbot & RAG Use (Early May 2025)

    Top 10 LLMs on Hugging Face for Chatbot & RAG This list is based on a combination of factors including general popularity, instruction-following capabilities, context window size, and community interest relevant to chatbot and Retrieval-Augmented Generation (RAG) applications. 1. mistralai/Mixtral-8x7B-Instruct-v0.1 Use Cases: Excellent for instruction following, complex reasoning in chatbots, and can handle long contexts… Read more

  • Top 10 LLMs on Hugging Face & Use Cases: Part 2

    Another Top 10 LLMs on Hugging Face & Use Cases Here’s another selection of popular and interesting Large Language Models available on Hugging Face, showcasing the diversity of the open-source LLM landscape as of early May 2025. 1. google/gemma-7b-it Use Cases: Instruction tuning, conversational AI, general text generation, following complex prompts. View on Hugging Face… Read more

  • Top 10 LLMs on Hugging Face & Use Cases

    Top 10 LLMs on Hugging Face & Use Cases Please note that “top” can be subjective and based on various factors like downloads, recent interest, and performance on specific benchmarks. This list reflects a mix of widely used and influential models as of early May 2025. 1. mistralai/Mixtral-8x7B-Instruct-v0.1 Use Cases: Instruction following, complex reasoning, code… Read more

  • Using local LLM for Document Extraction

    Non-Cloud LLM for Document Extraction This guide explains how to use a non-cloud version of a pretrained Large Language Model (LLM) for document extraction, focusing on open-source models and local execution. Phase 1: Setting Up Your Local Environment 1. Hardware Requirements Ensure your system meets the following recommendations: CPU/GPU: An NVIDIA GPU with sufficient VRAM… Read more

  • CUDA vs. ROCm for LLM Training

    CUDA vs. ROCm CUDA (Compute Unified Device Architecture) and ROCm (Radeon Open Compute) are the two primary software platforms for General-Purpose computing on Graphics Processing Units (GPGPU) used in accelerating computationally intensive tasks, including the training of Large Language Models (LLMs). CUDA is developed by NVIDIA and is designed for their GPUs, while ROCm is… Read more

  • Exploring CUDA (Compute Unified Device Architecture)

    Exploring CUDA CUDA is a parallel computing platform and programming model developed by NVIDIA for use with their GPUs. It allows software developers to leverage the massive parallel processing power of NVIDIA GPUs for general-purpose computing tasks, significantly accelerating applications beyond traditional CPU-bound processing. 1. CUDA Architecture: The Hardware Foundation NVIDIA GPUs are designed with… Read more

  • Can AMD GPUs Train LLMs?

    Can AMD GPUs Train LLMs? AMD GPUs can be used to train Large Language Models (LLMs). While NVIDIA GPUs, particularly those with CUDA architecture, have historically dominated the LLM training landscape, AMD has been making significant strides in this area with its ROCm (Radeon Open Compute) platform. 1. ROCm Platform ROCm is AMD’s open-source software… Read more

  • AMD GPUs vs. NVIDIA GPUs for LLM Training

    AMD GPUs vs. NVIDIA GPUs for LLM Training Here we dive into how AMD GPUs can be used for LLM training, and compare them directly with the dominant player in this field: NVIDIA GPUs. Comparison: AMD vs. NVIDIA GPUs for LLM Training Feature NVIDIA GPUs AMD GPUs Dominant Architecture/Platform CUDA (Compute Unified Device Architecture) –… Read more

  • Vector Embeddings in LLMs: A Detailed Explanation

    Vector Embeddings in LLMs: A Detailed Explanation What are Vector Embeddings? Vector embeddings are numerical representations of data points, such as words, phrases, sentences, or even entire documents. These representations exist as vectors in a high-dimensional space. The key idea behind vector embeddings is to capture the semantic meaning and relationships between these data points,… Read more

  • How GPU Architecture revolutionized LLMs

    How GPU Architecture Helped LLMs The development and advancement of Large Language Models (LLMs) have been significantly propelled by the unique architecture of Graphics Processing Units (GPUs). Their parallel processing capabilities, high memory bandwidth, and specialized compute units have made training and deploying these massive models feasible and efficient. 1. Massively Parallel Processing LLMs involve… Read more

  • Salesforce Agentic AI: A Comprehensive Overview

    Salesforce Agentic AI: A Comprehensive Overview Salesforce Agentic AI represents a significant evolution in how artificial intelligence is integrated into the Salesforce platform. Moving beyond simple automation and predictive analytics, Agentic AI aims to create intelligent, autonomous agents capable of understanding complex goals, planning multi-step actions, and executing tasks on behalf of users. This detailed… Read more

  • AI Agent with Short-Term Memory on AWS

    AI Agent with Short-Term Memory on AWS In the realm of Artificial Intelligence, creating agents that can effectively interact with their environment and solve complex tasks often requires equipping them with a form of short-term memory, also known as “scratchpad” or working memory. This allows the agent to temporarily store and process information relevant to… Read more

  • AI Agent with Scratchpad Memory on AWS

    AI Agents with Scratchpad Memory on AWS AI agents equipped with “scratchpad” memory, or short-term working memory, significantly enhance their capabilities by allowing them to temporarily store and process information relevant to their current tasks. This enables them to handle complex scenarios, maintain context across interactions, and reason more effectively. This article explores the use… Read more

  • Implementing Graph-Based Retrieval Augmented Generation

    Implementing Graph-Based Retrieval Augmented Generation Implementing Graph-Based Retrieval Augmented Generation This document outlines the implementation of a system that combines the power of Large Language Models (LLMs) with structured knowledge from a graph database to perform advanced question answering. This approach, known as Graph-Based Retrieval Augmented Generation (RAG), allows us to answer complex queries that… Read more