Building a Personalized Healthcare Recommendations AI Agent on GCP: A Comprehensive Guide

Building a Personalized Healthcare Recommendations AI Agent on GCP: A Comprehensive Guide

This article provides a detailed guide to building a Personalized Healthcare Recommendations AI Agent on Google Cloud (). We will explore the necessary GCP services, a comprehensive architecture, sample training data, the implementation of model training using , and the creation of a backend service to serve recommendations via a Vertex AI Endpoint.

Tech Stack:

  • Real-time Data Ingestion: Google Cloud Pub/Sub
  • Cloud Functions or Dataflow
  • Low-Latency Data Store (Short-Term Memory): Cloud Memorystore for
  • Scalable & Secure Data Store (Long-Term Memory & Feature Store): Cloud Healthcare (FHIR Store), , Vertex AI Feature Store
  • Recommendation Model Hosting & Inference: Vertex AI Endpoints
  • AI/ML Frameworks: TensorFlow or PyTorch with Vertex AI Workbench and Vertex AI Training
  • Cloud Workflows or Composer
  • API Gateway: API Gateway
  • Monitoring & Logging: Cloud Monitoring, Cloud Logging, Cloud Trace
  • Infrastructure as Code (IaC): Terraform or Deployment Manager
  • Security & Compliance: Cloud IAM, VPC Service Controls, Cloud KMS

Conceptual Architecture Diagram:

1. Patient Interaction/Data Generation2. Real-time Ingestion (Pub/Sub)3. Real-time Processing (Cloud Functions/Dataflow)4. Short-Term Memory (Memorystore for Redis)

5. Recommendation Request (API Gateway)6. Recommendation Service (Vertex AI Endpoint)4. Short-Term Memory, 8. Long-Term Storage (Cloud Healthcare API/BigQuery/Vertex AI Feature Store)

6. Recommendation Service7. Recommendation Response (API Gateway)

1. Patient Interaction/Data Generation8. Long-Term Storage (Cloud Healthcare API/BigQuery)6. Recommendation Service

Monitoring & Logging (Cloud Monitoring/Logging/Trace) observes all components.

Sample Training Data for Personalized Healthcare Recommendations:


patient_id,age,gender,condition,prior_treatment,response_to_treatment,recommended_treatment
patient001,65,male,diabetes,insulin,positive,lifestyle_change|new_medication_a
patient002,48,female,hypertension,diet_exercise,neutral,medication_b|monitor_bp
patient003,72,female,arthritis,pain_relievers,positive,physical_therapy|new_pain_med
patient004,33,male,asthma,inhaler,positive,continue_current_treatment
patient005,59,male,diabetes|hypertension,insulin|medication_c,neutral,new_medication_a|medication_d
patient006,29,female,anxiety,therapy,positive,continue_therapy|mindfulness_exercises
patient007,80,male,heart_disease,medication_e,negative,new_medication_f|surgery_consult
patient008,41,female,migraine,triptans,positive,continue_current_treatment|lifestyle_adjustments
patient009,68,male,prostate_cancer,radiation,neutral,hormone_therapy|monitor_psa
patient010,52,female,depression,antidepressants,positive,continue_current_treatment|support_group
    

Code to Implement Model Training (Vertex AI – train.py):


import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.metrics import classification_report
import joblib
import os
import argparse

def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_dir', type=str)
    parser.add_argument('--data_path', type=str, default='/gcs/your-bucket/healthcare_data.csv')
    return parser.parse_args()

def load_data(data_path):
    df = pd.read_csv(data_path)
    return df

def preprocess_data(df):
    df['condition'] = df['condition'].str.split('|')
    df['prior_treatment'] = df['prior_treatment'].str.split('|')
    df['recommended_treatment'] = df['recommended_treatment'].str.split('|')
    mlb_condition = MultiLabelBinarizer()
    df_condition = pd.DataFrame(mlb_condition.fit_transform(df['condition']), columns=mlb_condition.classes_, =df.index)
    mlb_treatment = MultiLabelBinarizer()
    df_prior_treatment = pd.DataFrame(mlb_treatment.fit_transform(df['prior_treatment']), columns=mlb_treatment.classes_, index=df.index)
    df = pd.concat([df, df_condition, df_prior_treatment], axis=1).drop(columns=['condition', 'prior_treatment', 'patient_id']).dropna()
    return df, mlb_condition.classes_.tolist(), mlb_treatment.classes_.tolist(), df['recommended_treatment'].tolist()

def train_model(X_train, y_train):
    model = RandomForestClassifier(n_estimators=100, random_state=42)
    model.fit(X_train, y_train)
    return model

def evaluate_model(model, X_test, y_test):
    y_pred = model.predict(X_test)
    print("Classification Report:")
    print(classification_report(y_test, y_pred, zero_division=0))

def save_model(model, model_dir):
    model_path = os.path.join(model_dir, "model.joblib")
    joblib.dump(model, model_path)
    print(f"Model saved to: {model_path}")

if __name__ == "__main__":
    args = parse_args()
    data_df = load_data(args.data_path)
    processed_df, condition_classes, treatment_classes, target = preprocess_data(data_df)
    X = processed_df.drop(columns=['recommended_treatment'])
    y_single = [item[0] if item else 'unknown' for item in target]
    X_train, X_test, y_train, y_test = train_test_split(X, y_single, test_size=0.2, random_state=42)
    model = train_model(X_train, y_train)
    evaluate_model(model, X_test, y_test)
    save_model(model, args.model_dir)
    print("Condition Classes:", condition_classes)
    print("Treatment Classes:", treatment_classes)
    

Code to Call Trained Model via Vertex AI Endpoint:


from google.cloud import aiplatform
import 

def get_vertex_ai_recommendations(patient_data):
    project_id = "your-gcp-project-id"
    location_id = "us-central1"
    endpoint_name = "your-healthcare-recommendation-endpoint"
    aiplatform.init(project=project_id, location=location_id)
    endpoint = aiplatform.Endpoint(endpoint_name=endpoint_name)
    try:
        prediction = endpoint.predict(instances=[patient_data]).predictions[0]
        return prediction
    except Exception as e:
        print(f"Error calling Vertex AI endpoint: {e}")
        return []

if __name__ == "__main__":
    sample_patient_data = {
        "age": 70,
        "gender": "female",
        "condition": ["hypertension", "arthritis"],
        "prior_treatment": ["diet_exercise", "pain_relievers"],
        'diabetes': 0, 'insulin': 1, 'hypertension': 1, 'diet_exercise': 1, 'arthritis': 1, 'pain_relievers': 1
    }
    recommendations = get_vertex_ai_recommendations(sample_patient_data)
    print("Personalized Healthcare Recommendations:")
    print(json.dumps(recommendations, indent=2))
    

Integrated Backend Service for Healthcare Recommendations (Flask):


from flask import Flask, request, jsonify
from google.cloud import aiplatform
import json
import redis

app = Flask(__name__)

PROJECT_ID = "your-gcp-project-id"
LOCATION_ID = "us-central1"
ENDPOINT_NAME = "your-healthcare-recommendation-endpoint"
REDIS_HOST = "your-memorystore-redis-ip"
REDIS_PORT = 6379

aiplatform.init(project=PROJECT_ID, location=LOCATION_ID)
endpoint = aiplatform.Endpoint(endpoint_name=ENDPOINT_NAME)
redis_client = redis.Redis(host=REDIS_HOST, port=REDIS_PORT)

def get_patient_features(patient_id):
    recent_activity_raw = redis_client.lrange(f"recent_activity:{patient_id}", 0, -1)
    recent_activity = [json.loads(item.decode('utf-8')) for item in recent_activity_raw]
    patient_features = {
        "recent_activity": recent_activity,
        "age": 68,
        "gender": "male",
        'diabetes': 1 if any(act.get('data', {}).get('condition') == 'diabetes' for act in recent_activity if act.get('activity_type') == 'diagnosis') else 0,
        'hypertension': 1 if any(act.get('data', {}).get('condition') == 'hypertension' for act in recent_activity if act.get('activity_type') == 'diagnosis') else 0,
        'insulin': 1 if any(act.get('data', {}).get('medication') == 'insulin' for act in recent_activity if act.get('activity_type') == 'medication_taken') else 0,
        'diet_exercise': 1 if any(act.get('data', {}).get('treatment') == 'diet_exercise' for act in recent_activity if act.get('activity_type') == 'treatment_given') else 0
    }
    return patient_features

def get_vertex_ai_recommendations(patient_features):
    try:
        prediction = endpoint.predict(instances=[patient_features]).predictions[0]
        return prediction
    except Exception as e:
        print(f"Error calling Vertex AI endpoint: {e}")
        return []

@app.route('/recommendations/', methods=['GET'])
def get_recommendations_api(patient_id):
    patient_features = get_patient_features(patient_id)
    recommendations = get_vertex_ai_recommendations(patient_features)
    return jsonify({"patient_id": patient_id, "recommendations": recommendations})

if __name__ == '__main__':
    app.run(debug=True, host='0.0.0.0', port=8080)
    

Important Considerations:

  • Data Integration and Feature Engineering: The get_patient_features function needs to be robustly implemented to connect to actual healthcare data sources and perform comprehensive feature engineering that aligns with the training pipeline.
  • Multi-Label Prediction: The current training script simplifies the prediction task. A real system might need to predict multiple relevant treatments, requiring a multi-label classification approach or a different recommendation .
  • Data Privacy and Security: Implementing stringent security measures and adhering to healthcare compliance (e.g., HIPAA) is paramount throughout the entire system.
  • Model Evaluation and Monitoring: Rigorous evaluation of the model’s using appropriate healthcare-specific metrics and continuous monitoring in production are essential.

This comprehensive guide provides a detailed overview of building a Personalized Healthcare Recommendations AI Agent on GCP, covering the essential components from infrastructure to model serving. Remember that building a production-ready system requires careful attention to data integration, security, scalability, and ethical considerations.

Agentic AI (26) AI Agent (20) airflow (7) Algorithm (22) Algorithms (20) apache (46) API (101) Automation (43) Autonomous (6) auto scaling (3) AWS (44) aws bedrock (1) Azure (22) BigQuery (11) bigtable (7) Career (2) Chatbot (10) cloud (50) code (123) cosmosdb (3) cpu (26) database (83) Databricks (10) Data structure (16) Design (62) dynamodb (16) ELK (1) embeddings (9) emr (10) examples (47) flink (9) gcp (18) Generative AI (7) gpu (7) graph (55) graph database (14) image (29) index (32) indexing (11) interview (5) java (37) json (54) Kafka (28) LLM (29) LLMs (10) monitoring (64) Monolith (10) Networking (6) NLU (2) node.js (10) Nodejs (1) nosql (21) Optimization (45) performance (101) Platform (48) Platforms (22) postgres (15) productivity (10) programming (34) python (59) RAG (105) rasa (3) rdbms (4) ReactJS (3) redis (21) Restful (3) rust (12) Spark (21) spring boot (1) sql (42) time series (13) tips (6) tricks (2) vector (15) Vertex AI (14) Workflow (21)

Leave a Reply

Your email address will not be published. Required fields are marked *